Learning & Memory 2008-04-01

Galpha(i2) inhibition of adenylate cyclase regulates presynaptic activity and unmasks cGMP-dependent long-term depression at Schaffer collateral-CA1 hippocampal synapses.

Christopher P Bailey, Russell E Nicholls, Xiao-lei Zhang, Zhen-yu Zhou, Wolfgang Müller, Eric R Kandel, Patric K Stanton

Index: Learn. Mem. 15 , 261-70, (2008)

Full Text: HTML

Abstract

Cyclic AMP signaling plays a central role in regulating activity at a number of synapses in the brain. We showed previously that pairing activation of receptors that inhibit adenylate cyclase (AC) and reduce the concentration of cyclic AMP, with elevation of the concentration of cyclic GMP is sufficient to elicit a presynaptically expressed form of LTD at Schaffer collateral-CA1 synapses in the hippocampus. To directly test the role of AC inhibition and G-protein signaling in LTD at these synapses, we utilized transgenic mice that express a mutant, constitutively active inhibitory G protein, Galpha(i2), in principal neurons of the forebrain. Transgene expression of Galpha(i2) markedly enhanced LTD and impaired late-phase LTP at Schaffer collateral synapses, with no associated differences in input/output relations, paired-pulse facilitation, or NMDA receptor-gated conductances. When paired with application of a type V phosphodiesterase inhibitor to elevate the concentration of intracellular cyclic GMP, constitutively active Galpha(i2) expression converted the transient depression normally caused by this treatment to an LTD that persisted after the drug was washed out. Moreover, this effect could be mimicked in control slices by pairing type V phosphodiesterase inhibitor application with application of a PKA inhibitor. Electrophysiological recordings of spontaneous excitatory postsynaptic currents and two-photon visualization of vesicular release using FM1-43 revealed that constitutively active Galpha(i2) tonically reduced basal release probability from the rapidly recycling vesicle pool of Schaffer collateral terminals. Our findings support the hypothesis that inhibitory G-protein signaling acts presynaptically to regulate release, and, when paired with elevations in the concentration of cyclic GMP, converts a transient cyclic GMP-induced depression into a long-lasting decrease in release.


Related Compounds

Related Articles:

Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (NAMPT) inhibition on human cancer cells.

2014-01-01

[PLoS ONE 9(12) , e114019, (2014)]

Inhibition of mitochondrial pyruvate transport by zaprinast causes massive accumulation of aspartate at the expense of glutamate in the retina.

2013-12-13

[J. Biol. Chem. 288(50) , 36129-40, (2013)]

GPR35 activation reduces Ca2+ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses.

2013-01-01

[PLoS ONE 8 , e82180, (2013)]

Phosphodiesterase inhibition induces retinal degeneration, oxidative stress and inflammation in cone-enriched cultures of porcine retina

2015-01-01

[Exp. Eye Res. 111 , 122-33, (2013)]

An intact medial preoptic area is necessary for zaprinast to modulate paced mating behavior in female rats

2012-01-18

[Physiol. Behav. 105(2) , 264-8, (2012)]

More Articles...