Journal of Lipid Research 2006-05-01

Characterization of low density lipoprotein receptor ligand interactions by fluorescence resonance energy transfer.

Taichi Yamamoto, Johanne Lamoureux, Robert O Ryan

Index: J. Lipid Res. 47(5) , 1091-6, (2006)

Full Text: HTML

Abstract

The low density lipoprotein receptor (LDLR) is the prototype of a family of cell surface receptors involved in a wide range of biological processes. A soluble low density lipoprotein receptor (sLDLR) and a tryptophan (Trp)-deficient variant human apolipoprotein E3 (apoE3) N-terminal domain (NT) were used in binding studies. The sole cysteine in apoE3-NT was covalently modified with an extrinsic fluorescence probe, N-(iodoacetyl)-N'-(5-sulfo-1-napthyl)ethylenediamine (AEDANS), and the protein was complexed with lipid. Incubation of sLDLR with AEDANS-Trp-null apoE3-NT dimyristoylphosphatidylcholine (DMPC) disks, but not lipid-free AEDANS-apoE, induced an enhancement in AEDANS fluorescence emission intensity (excitation, 280 nm) consistent with intermolecular energy transfer from excited Trp in sLDLR to receptor-bound apoE. Ligand binding to sLDLR required calcium and was saturable. In competition binding assays, unlabeled apoE3-NT DMPC inhibited AEDANS-apoE DMPC binding to sLDLR more effectively than low density lipoprotein. Fluorescence changes in this system reflected pH-dependent ligand binding and release from sLDLR consistent with models derived from the X-ray crystal structure of the receptor at endosomal pH. Intermolecular energy transfer from excited Trp in LDLR family members to fluorescently tagged ligands represents a sensitive and convenient assay for the characterization of the myriad molecular interactions ascribed to this family of receptor.


Related Compounds

Related Articles:

Detection of proteins on blot membranes.

2001-05-01

[Curr. Protoc. Protein Sci. Chapter 10 , Unit 10.8, (2001)]

Iron-sulfur cluster biosynthesis: characterization of IscU-IscS complex formation and a structural model for sulfide delivery to the [2Fe-2S] assembly site.

2009-08-01

[J. Biol. Inorg. Chem. 14(6) , 829-39, (2009)]

Characterization of the formation of amyloid protofibrils from barstar by mapping residue-specific fluorescence dynamics.

2006-05-12

[J. Mol. Biol. 358(4) , 935-42, (2006)]

Fluorescence-based peptide labeling and fractionation strategies for analysis of cysteine-containing peptides.

2005-07-15

[Anal. Chem. 77(14) , 4495-502, (2005)]

Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin-stimulated myosin ATPase activity.

2004-05-11

[Biochemistry 43(18) , 5551-61, (2004)]

More Articles...