Analytical Biochemistry 1984-05-15

Comparison of polyvinyl chloride membrane electrodes sensitive to alkylphosphonium ions for the determination of the electrical difference (delta psi) of Streptococcus mutans and Lactobacillus casei.

C W Keevil, I R Hamilton

Index: Anal. Biochem. 139(1) , 228-36, (1984)

Full Text: HTML

Abstract

Polyvinyl chloride membrane electrodes sensitive to tetraphenyl phosphonium (TPP+), butyltriphenyl phosphonium ( bTPP +), and methyltriphenyl phosphonium ( mTPP +) ions have been compared for the determination of the electrical potential difference (delta psi) of the oral bacteria, Streptococcus mutans DR0001 /6 and Lactobacillus casei RB1014 . All three types of electrode proved suitable for determining delta psi, although the TPP+-sensitive electrode was particularly susceptible to interference by protonmotive force (delta p) dissipators known to inhibit sugar uptake by the bacteria. The mTPP +-sensitive electrode was the least affected. Similarly, both strains had a high nonspecific binding capacity for TPP+ and bTPP + ions, and this increased for all three ions when the bacteria were heated to 80 degrees C for 1 h to abolish glucose uptake and metabolism. This heat-treatment procedure is therefore not a suitable control for determination of nonspecific binding to cells. However, 1% (v/v) toluene, 20 microM gramicidin, or 10 microM valinomycin effectively depolarized the bacteria without interfering with nonspecific binding. The ionophores were therefore used subsequently for the determination of nonspecific binding of the lipid-soluble cations. The mTPP + ion and corresponding electrode proved the most effective system, and delta psi values of -89 and -107 mV were obtained for S. mutans and L. casei, respectively, harvested from glucose-limited continuous cultures and incubated in 100 mM Hepes-KOH buffer (pH 7.0), containing 1 mM dithiothreitol and 10 mM glucose. Although the delta psi of S. mutans decreased significantly in the presence of Mes-KOH and potassium phosphate buffers at pH 7.0, it increased to -119 mV in Tris-HCl buffer (pH 7.0).(ABSTRACT TRUNCATED AT 250 WORDS)


Related Compounds

Related Articles:

Estimation with an ion-selective electrode of the membrane potential in cells of Paracoccus denitrificans from the uptake of the butyltriphenylphosphonium cation during aerobic and anaerobic respiration.

1981-04-15

[Biochem. J. 196(1) , 311-21, (1981)]

The measurement of membrane potential during photosynthesis and during respiration in intact cells of Rhodopseudomonas capsulata by both electrochromism and by permeant ion redistribution.

1981-11-15

[Biochem. J. 200(2) , 389-97, (1981)]

Tandem mass spectrometric characterization of thiol peptides modified by the chemoselective cationic sulfhydryl reagent (4-iodobutyl)triphenylphosphonium--effects of a cationic thiol derivatization on peptide fragmentation.

2011-10-01

[J. Am. Soc. Mass Spectrom. 22(10) , 1771-83, (2011)]

Membrane potentials in reconstituted cytochrome c oxidase proteoliposomes determined by butyltriphenyl phosphonium cation distribution.

1986-03-01

[Arch. Biochem. Biophys. 245(2) , 436-45, (1986)]

More Articles...