Bioorganic & Medicinal Chemistry 1998-06-01

Synthesis of 3-substituted benzamides and 5-substituted isoquinolin-1(2H)-ones and preliminary evaluation as inhibitors of poly(ADP-ribose)polymerase (PARP).

C Y Watson, W J Whish, M D Threadgill

Index: Bioorg. Med. Chem. 6(6) , 721-34, (1998)

Full Text: HTML

Abstract

Inhibitors of poly(ADP-ribose)polymerase (PARP) inhibit repair of damaged DNA and thus potentiate radiotherapy and chemotherapy of cancer. 3-Substituted benzamides and 5-substituted isoquinolin-1-ones have been synthesised and evaluated for inhibition of PARP. Reduction of 3-(bromoacetyl)benzamide, followed by treatment with base, gave RS-3-oxiranylbenzamide. Reduction of 3-(hydroxyacetyl)benzonitrile with bakers' yeast gave the R-diol which was converted to R-3-(1,2-dihydroxyethyl)benzamide. Similar reduction of 3-(acetoxyacetyl)benzonitrile led towards the S-diol which was converted to its cyclic acetonide. E-2-(2,6-Dicyanophenyl)-N,N-dimethylethenamine was formed by condensation of 2,6-dicyanotoluene with dimethylformamide dimethyl acetal (DMFDMA); cyclisation under acidic conditions afforded 5-cyanoisoquinolin-1-one. Heck coupling of 5-iodoisoquinolin-1-one with propenoic acid formed E-3-(1-oxoisoquinolin-5-yl)propenoic acid. 3-Oxiranylbenzamide, 5-bromoisoquinolin-1-one and 5-iodoisoquinolin-1-one were among the most potent inhibitors of PARP activity in a preliminary screen in vitro.


Related Compounds

Related Articles:

Synthesis and in vitro biological activity of N-(5-amino-2-methylphenyl)-4-(3-pyridyl)-2-pyrimidinamine derivatives. Mohana KN and Mallesha L.

[Bulg. Chem. Commun. 43(3) , 395-400, (2011)]

More Articles...