Redox characteristics of a de novo quinone protein.
Sam Hay, Kristina Westerlund, Cecilia Tommos
Index: J. Phys. Chem. B 111(13) , 3488-95, (2007)
Full Text: HTML
Abstract
The electrochemistry of 2,6-dimethylbenzoquinone (DMBQ) has been characterized for three different systems: DMBQ freely solvated in aqueous buffer; DMBQ bound to a neutral, blocked cysteine (N-acetyl-L-cysteine methyl ester) and the resulting DMBQ-bCys compound solvated in aqueous buffer; and DMBQ bound to a small model protein denoted alpha(3)C. The goal of this study is to detect and characterize differences in the redox properties of the protein-ligated DMBQ relative to the solvated quinones. The alpha(3)C protein used here is a tryptophan-32 to cysteine-32 variant of the structurally defined alpha(3)W de novo protein (Dai et al. J. Am. Chem. Soc. 2002, 124, 10952-10953). The properties of alpha(3)C were recently described (Hay et al. Biochemistry 2005, 44, 11891-11902). DMBQ was covalently bound to bCys and alpha(3)C through a sulfur substitution reaction with the cysteine thiol. In contrast to the solvated DMBQ and DMBQ-bCys compounds, diffusion controlled electrochemistry of DMBQ-alpha(3)C showed well-behaved and fully reversible n = 2 oxidation/reduction with a peak separation of approximately 30 mV between pH 5 and 9. DMBQ-alpha(3)C could also be immobilized on a gold electrode modified with a self-assembled monolayer of 3-mercaptopropionoic acid, allowing the measurement, by cyclic voltammetry, of an apparent rate of electron transfer of 22 s(-1). The (cysteine) sulfur substitution significantly lowers one of the hydroquinone pKA's from 10.4 in DMBQ to 6.8 in DMBQ-bCys. This pKA is slightly elevated in DMBQ-alpha(3)C to 7.0 and the E1/2 at pH 7.0 is raised by 110 mV from +190 mV in DMBQ-bCys to +297 mV in DMBQ-alpha(3)C.
Related Compounds
Related Articles:
1998-09-15
[Biochemistry 37(37) , 12744-52, (1998)]
1982-06-15
[Biochem. J. 204(3) , 705-12, (1982)]
2010-01-01
[Bioorg. Med. Chem. 18 , 3457-66, (2010)]
On becoming a parasite: evaluating the role of wall oxidases in parasitic plant development.
1998-02-01
[Chem. Biol. 5(2) , 103-17, (1998)]
Sonochemistry of quinones in argon-saturated aqueous solutions: enhanced cytochrome c reduction.
1999-09-01
[Chem. Res. Toxicol. 12(9) , 850-4, (1999)]