Solar cell efficiency, self-assembly, and dipole-dipole interactions of isomorphic narrow-band-gap molecules.
Christopher J Takacs, Yanming Sun, Gregory C Welch, Louis A Perez, Xiaofeng Liu, Wen Wen, Guillermo C Bazan, Alan J Heeger
Index: J. Am. Chem. Soc. 134(40) , 16597-16606, (2012)
Full Text: HTML
Abstract
We examine the correlations of the dipole moment and conformational stability to the self-assembly and solar cell performance within a series of isomorphic, solution-processable molecules. These charge-transfer chromophores are described by a D(1)-A-D-A-D(1) structure comprising electron-rich 2-hexylbithiophene and 3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene moieties as the donor units D(1) and D, respectively. The building blocks 2,1,3-benzothiadiazole (BT) and [1,2,5]thiadiazolo[3,4-c]pyridine (PT) were used as the electron-deficient acceptor units A. Using a combination of UV-visible spectroscopy, field-effect transistors, solar cell devices, grazing incident wide-angle X-ray scattering, and transmission electron microscopy, three PT-containing compounds (1-3) with varying regiochemistry and symmetry, together with the BT-based compound 5,5'-bis{(4-(7-hexylthiophen-2-yl)thiophen-2-yl)-[1,2,5]thiadiazolobenzene}-3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene (4), are compared and contrasted in solution, in thin films, and as blends with the electron acceptor [6,6]-phenyl-C(70)-butyric acid methyl ester. The molecules with symmetric orientations of the PT acceptor, 1 and 2, yield highly ordered blended thin films. The best films, processed with the solvent additive 1,8-diiodooctane, show donor "crystallite" length scales on the order of 15-35 nm and photovoltaic power conversion efficiencies (PCEs) of 7.0 and 5.6%, respectively. Compound 3, with an unsymmetrical orientation of PT heterocycles, shows subtle differences in the crystallization behavior and a best PCE of 3.2%. In contrast, blends of the BT-containing donor 4 are highly disordered and give PCEs below 0.2%. We speculate that the differences in self-assembly arise from the strong influence of the BT acceptor and its orientation on the net dipole moment and geometric description of the chromophore.
Related Compounds
Related Articles:
2015-10-26
[ChemSusChem 8 , 3459-64, (2015)]
[Tetrahedron 61 , 10975, (2005)]
Stalder, Romain; et. al.
[Chem. Mater. 24(16) , 3143-3152, (2012)]