Molecules 2013-01-01

Synthesis and dual histamine H₁ and H₂ receptor antagonist activity of cyanoguanidine derivatives.

Bassem Sadek, Rudi Alisch, Armin Buschauer, Sigurd Elz

Index: Molecules 18(11) , 14186-202, (2013)

Full Text: HTML

Abstract

Premedication with a combination of histamine H₁ receptor (H₁R) and H₂ receptor (H₂R) antagonists has been suggested as a prophylactic principle, for instance, in anaesthesia and surgery. Aiming at pharmacological hybrids combining H₁R and H₂R antagonistic activity, a series of cyanoguanidines 14-35 was synthesized by linking mepyramine-type H₁R antagonist substructures with roxatidine-, tiotidine-, or ranitidine-type H₂R antagonist moieties. N-desmethylmepyramine was connected via a poly-methylene spacer to a cyanoguanidine group as the "urea equivalent" of the H₂R antagonist moiety. The title compounds were screened for histamine antagonistic activity at the isolated ileum (H₁R) and the isolated spontaneously beating right atrium (H₂R) of the guinea pig. The results indicate that, depending on the nature of the H₂R antagonist partial structure, the highest H₁R antagonist potency resided in roxatidine-type compounds with spacers of six methylene groups in length (compound 21), and tiotidine-type compounds irrespective of the alkyl chain length (compounds 28, 32, 33), N-cyano-N'-[2-[[(2-guanidino-4-thiazolyl)methyl]thio]ethyl]-N″-[2-[N-[2-[N-(4-methoxybenzyl)-N-(pyridyl)-amino] ethyl]-N-methylamino]ethyl] guanidine (25, pKB values: 8.05 (H₁R, ileum) and 7.73 (H₂R, atrium) and the homologue with the mepyramine moiety connected by a six-membered chain to the tiotidine-like partial structure (compound 32, pKB values: 8.61 (H₁R) and 6.61 (H₂R) were among the most potent hybrid compounds. With respect to the development of a potential pharmacotherapeutic agent, structural optimization seems possible through selection of other H₁R and H₂R pharmacophoric moieties with mutually affinity-enhancing properties.


Related Compounds

Related Articles:

[Tetrahedron Lett. 48 , 2733, (2007)]

4H-3, 1-Benzoxazines, Their Salts and Dihydro Derivatives.(Review). Gromachevskaya EV, et al.

[Chem. Heterocycl. Comp. 39(2) , 137-55, (2003)]

More Articles...