Journal of Biological Chemistry 1988-08-25

Metabolism of synthetic inositol trisphosphate analogs.

M A Polokoff, G H Bencen, J P Vacca, S J deSolms, S D Young, J R Huff

Index: J. Biol. Chem. 263 , 11922, (1988)

Full Text: HTML

Abstract

A series of synthetic analogs was employed to explore structure-activity relationships in the metabolism of the second messenger inositol trisphosphate (IP3) in vascular tissue. Cytosolic IP3-5-phosphatase activity was purified approximately 240-fold from bovine aorta. All synthetic analogs tested were apparent competitive inhibitors of the 5-phosphatase activity. The order of potency was DL-1,3,4,5-IP3 greater than D-1,4,5-IP3 greater than DL-1,3,4-IP3 greater than L-1,4,5-IP3 greater than 1,3,5-IP3 greater than DL-6-methoxy-1,4,5-IP3 greater than DL-2,4,5-IP3 greater than DL-1,2,4-cyclohexane-P3. The least potent analogs had Ki values only 11 times higher than the apparent Km of the substrate D-1,4,5-[3H]IP3. However, only three synthetic compounds, DL-1,3,4,5-IP4, D-1,4,5-IP3, and DL-2,4,5-IP3, could serve as substrates for the 5-phosphatase. IP3 kinase activity in the same tissue exhibited considerably more selectivity with respect to inhibition by IP3 analogs. D-1,4,5-IP3 was about 30 times more potent than DL-1,3,4,5-IP4 and 100-1000 times more potent than the other compounds tested. The function of the IP3 receptor was evaluated by measuring labeled calcium mobilization in permeabilized bovine aortic smooth muscle cells in culture. While all analogs tested were full agonists, vast differences in potency were observed. D-1,4,5-IP3 was about 30 times more potent than DL-2,4,5-IP3 and 100-2000 times more potent than the other analogs tested. The results suggest that IP3-5-phosphatase activity is relatively nonselective in the binding of inositol polyphosphates, while IP3 kinase activity and the IP3 receptor exhibit great selectivity in the recognition of these compounds.


Related Compounds

Related Articles:

More Articles...