Fabrication of monodisperse liposomes-in-microgel hybrid microparticles in capillary-based microfluidic devices.
Eun Seon Jeong, Han Am Son, Min Kyung Kim, Kyoung-Ho Park, Sechan Kay, Pil Seok Chae, Jin Woong Kim
Index: Colloids Surf. B Biointerfaces 123 , 339-44, (2014)
Full Text: HTML
Abstract
This study introduces a drop-based microfluidic approach to physically immobilize liposomes in microgel (liposomes-in-microgel) particles. For this, we generate a uniform liposomes-in-water-in-oil emulsion in a capillary-based microfluidic device. Basically, we have investigated how the flow rate and flow composition affect generation of emulsion precursor drops in micro-channels. Then, the precursor emulsion drops are solidified by photo-polymerization. From characterization of hydrogel mesh sizes, we have figured out that the mesh size of the liposomes-in-microgel particles is bigger than that of bare microgel particles, since liposomes take space in the hydrogel phase. In our further study on drug releasing, we have observed that immobilization of liposomes in the microgel particles can not only remarkably retard drug releasing, but also enables a sustained release, which stems from the enhanced matrix viscosity of the surrounding hydrogel phase. Copyright © 2014 Elsevier B.V. All rights reserved.
Related Compounds
Related Articles:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
2014-06-02
[J. Exp. Med. 211(6) , 1079-91, (2014)]
2012-07-01
[Int. J. Obes. 38(12) , 1538-44, (2014)]
2014-01-01
[PLoS Biol. 12(1) , e1001758, (2014)]
Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.
2014-12-11
[Oncogene 33(50) , 5688-96, (2014)]