Molecular and Cellular Endocrinology 2015-10-15

Chenodeoxycholic acid, an endogenous FXR ligand alters adipokines and reverses insulin resistance.

Mohamed Sham Shihabudeen, Debasish Roy, Joel James, Kavitha Thirumurugan

Index: Mol. Cell. Endocrinol. 414 , 19-28, (2015)

Full Text: HTML

Abstract

Adipose tissue secretes adipokines that regulate insulin sensitivity in adipocytes and other peripheral tissues critical to glucose metabolism. Insulin resistance is associated with severe alterations in adipokines characterized by release of increased pro-inflammatory cytokines and decreased anti-inflammatory cytokines from adipose tissue. The role of Farnesoid X receptor (FXR) activation on adipokines in relation to adipose tissue inflammation and insulin resistance is not completely explored. For the first time, we have evaluated the ability of Chenodeoxycholic acid (CDCA), an endogenous FXR ligand, in restoring the disturbance in adipokine secretion and insulin resistance in palmitate treated 3T3-L1 cells and adipose tissues of High fat diet (HFD) rats. CDCA suppressed several of the tested pro-inflammatory adipokines (TNF-α, MCP-1, IL-6, Chemerin, PAI, RBP4, resistin, vaspin), and enhanced the major anti-inflammatory and insulin sensitizing adipokines (adiponectin, leptin). CDCA suppressed the activation of critical inflammatory regulators such as NF-κB and IKKβ which are activated by palmitate treatment in differentiated cells and HFD in rats. We show the altered adipokines in insulin resistance, its association with inflammatory regulators, and the role of CDCA in amelioration of insulin resistance by modulation of adipokines. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.


Related Compounds

Related Articles:

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Immunomodulation by the Pseudomonas syringae HopZ type III effector family in Arabidopsis.

2014-01-01

[PLoS ONE 9(12) , e116152, (2014)]

Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy.

2015-05-01

[Biomaterials 51 , 1-11, (2015)]

Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells.

2015-04-01

[J. Pineal Res. 58(3) , 310-20, (2015)]

25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells.

2015-04-22

[J. Ethnopharmacol. 164 , 265-72, (2015)]

More Articles...