Biochemistry (Washington) 2015-03-10

Mechanistic insights into the lipid interaction of an ancient saposin-like protein.

Matthias Michalek, Matthias Leippe

Index: Biochemistry 54(9) , 1778-86, (2015)

Full Text: HTML

Abstract

The members of the expanding family of saposin-like proteins (SAPLIPs) have various biological functions in plants, animals, and humans. In addition to a similar protein backbone, these proteins have in common the fact that they interact with lipid membranes. According to their phylogenetic position, it has long been thought that amoeboid protozoans produce archetypes of SAPLIPs and that these are lytic proteins that can perforate membranes of prokaryotic and eukaryotic target cells. Here, we show that an amoebic SAPLIP from Entamoeba invadens does not form lytic pores in membranes but displays several characteristics that are known from human saposins. The protein named invaposin changes the conformation from a closed to an open form in the presence of lipid membranes, acts in a pH-dependent manner, selectively binds anionic lipids, aggregates lipid vesicles of the preferred composition, and dimerizes upon acidification. Our data indicate that the principal features of the lipid-binding saposins evolved long before the appearance of the vertebrate lineage and push the origin of saposins even deeper down the phylogenetic tree to unicellular organisms.


Related Compounds

Related Articles:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus.

2015-04-01

[Appl. Environ. Microbiol. 81(7) , 2274-83, (2015)]

H4 histamine receptors inhibit steroidogenesis and proliferation in Leydig cells.

2014-12-01

[J. Endocrinol. 223(3) , 241-53, (2014)]

Loading and release mechanism of red clover necrotic mosaic virus derived plant viral nanoparticles for drug delivery of doxorubicin.

2014-12-29

[Small 10(24) , 5126-36, (2014)]

Decreased lipogenesis in white adipose tissue contributes to the resistance to high fat diet-induced obesity in phosphatidylethanolamine N-methyltransferase-deficient mice.

2014-10-01

[Biochim. Biophys. Acta 1851(2) , 152-62, (2015)]

More Articles...