Soft Matter 2015-09-14

Correlating antimicrobial activity and model membrane leakage induced by nylon-3 polymers and detergents.

Sara G Hovakeemian, Runhui Liu, Samuel H Gellman, Heiko Heerklotz

Index: Soft Matter 11 , 6840-51, (2015)

Full Text: HTML

Abstract

Most antimicrobial peptides act upon target microorganisms by permeabilizing their membranes. The mode of action is often assessed by vesicle leakage experiments that use model membranes, with the assumption that biological activity correlates with the permeabilization of the lipid bilayer. The current work aims to extend the interpretation of vesicle leakage results and examine the correlation between vesicle leakage and antimicrobial activity. To this end, we used a lifetime-based leakage assay with calcein-loaded vesicles to study the membrane permeabilizing properties of a novel antifungal polymer poly-NM, two of its analogs, and a series of detergents. In conjunction, the biological activities of these compounds against Candida albicans were assessed and correlated with data from vesicle leakage. Poly-NM induces all-or-none leakage in polar yeast lipid vesicles at the polymer's MIC, 3 μg mL(-1). At this and higher concentrations, complete leakage after an initial lag time was observed. Concerted activity tests imply that this polymer acts independently of the detergent octyl glucoside (OG) for both vesicle leakage and activity against C. albicans spheroplasts. In addition, poly-NM was found to have negligible activity against zwitterionic vesicles and red blood cells. Our results provide a consistent, detailed picture of the mode of action of poly-NM: this polymer induces membrane leakage by electrostatic lipid clustering. In contrast, poly-MM:CO, a nylon-3 polymer comprised of both cationic and hydrophobic segments, seems to act by a different mechanism that involves membrane asymmetry stress. Vesicle leakage for this polymer is transient (limited to <100%) and graded, non-specific among zwitterionic and polar yeast lipid vesicles, additive with detergent action, and correlates poorly with biological activity. Based on these results, we conclude that comprehensive leakage experiments can provide a detailed description of the mode of action of membrane permeabilizing compounds. Without this thorough approach, it would have been logical to assume that the two nylon-3 polymers we examined act via similar mechanisms; it is surprising that their mechanisms are so distinct. Some, but not all mechanisms of vesicle permeabilization allow for antimicrobial activity.


Related Compounds

Related Articles:

Simultaneous Determination of Methanol, Ethanol and Formic Acid in Serum and Urine by Headspace GC-FID.

2015-01-01

[J. Anal. Toxicol. 39 , 741-5, (2015)]

Cdk1 phosphorylates the Rac activator Tiam1 to activate centrosomal Pak and promote mitotic spindle formation.

2015-01-01

[Nat. Commun. 6 , 7437, (2015)]

Replication stress activates DNA repair synthesis in mitosis.

2015-12-10

[Nature 528 , 286-90, (2015)]

BoHV-4 immediate early 1 gene is a dispensable gene and its product is not a bone marrow stromal cell antigen 2 counteracting factor.

2015-01-01

[BMC Vet. Res. 11 , 224, (2015)]

Definition of the cattle killer cell Ig-like receptor gene family: comparison with aurochs and human counterparts.

2014-12-15

[J. Immunol. 193(12) , 6016-30, (2014)]

More Articles...