Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations.
Xiannu Jin, Thu-Lan Luong, Necole Reese, Heather Gaona, Vanessa Collazo-Velez, Chau Vuong, Brittney Potter, Jason C Sousa, Raul Olmeda, Qigui Li, Lisa Xie, Jing Zhang, Ping Zhang, Greg Reichard, Victor Melendez, Sean R Marcsisin, Brandon S Pybus
Index: J. Pharmacol. Toxicol. Methods 70(2) , 188-94, (2014)
Full Text: HTML
Abstract
Malaria is a major health concern and affects over 300million people a year. Accordingly, there is an urgent need for new efficacious anti-malarial drugs. A major challenge in developing new anti-malarial drugs is to design active molecules that have preferable drug-like characteristics. These "drug-like" characteristics include physiochemical properties that affect drug absorption, distribution, metabolism, and excretion (ADME). Compounds with poor ADME profiles will likely fail in vivo due to poor pharmacokinetics and/or other drug delivery related issues. There have been numerous assays developed in order to pre-screen compounds that would likely fail in further development due to poor absorption properties including PAMPA, Caco-2, and MDCK permeability assays.The use of cell-based permeability assays such as Caco-2 and MDCK serve as surrogate indicators of drug absorption and transport, with the two approaches often used interchangeably. We sought to evaluate both approaches in support of anti-malarial drug development. Accordingly, a comparison of both assays was conducted utilizing apparent permeability coefficient (Papp) values determined from liquid chromatography/tandem mass spectrometry (LC-MS) analyses.Both Caco-2 and MDCK permeability assays produced similar Papp results for potential anti-malarial compounds with low and medium permeability. Differences were observed for compounds with high permeability and compounds that were P-gp substrates. Additionally, the utility of MDCK-MDR1 permeability measurements was demonstrated in probing the role of P-glycoprotein transport in Primaquine-Chloroquine drug-drug interactions in comparison with in vivo pharmacokinetic changes.This study provides an in-depth comparison of the Caco-2 and MDCK-MDR1 cell based permeability assays and illustrates the utility of cell-based permeability assays in anti-malarial drug screening/development in regard to understanding transporter mediated changes in drug absorption/distribution.Published by Elsevier Inc.
Related Compounds
Related Articles:
2014-12-01
[Plast. Reconstr. Surg. 134(6) , 1213-23, (2014)]
Differentiation between human ClC-2 and CFTR Cl- channels with pharmacological agents.
2014-09-01
[Am. J. Physiol. Cell Physiol. 307(5) , C479-92, (2014)]
2014-09-01
[Arch. Toxicol. 88(9) , 1695-709, (2014)]
2014-01-01
[PLoS ONE 9(11) , e112413, (2014)]
2014-09-01
[Cell Biochem. Biophys. 70(1) , 367-81, (2014)]