Cu nanoparticles electrodeposited at liquid-liquid interfaces: a highly efficient catalyst for the hydrogen evolution reaction.
Emre Aslan, Imren Hatay Patir, Mustafa Ersoz
Index: Chemistry 21(12) , 4585-9, (2015)
Full Text: HTML
Abstract
The electrochemical deposition of Cu nanoparticles with an average diameter of approximately 25-35 nm has been reported at liquid-liquid interfaces by using the organic-phase electron-donor decamethylferrocene (DMFc). The electrodeposited Cu nanoparticles display excellent catalytic activity for the hydrogen evolution reaction (HER); this is the first reported catalytic effect of Cu nanoparticles at liquid-liquid interfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Related Compounds
Related Articles:
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations.
2015-04-15
[Biochem. J. 467(2) , 345-52, (2015)]
2015-05-01
[Biochem. J. 467(3) , 425-38, (2015)]
2015-04-01
[J. Virol. 89(8) , 4421-33, (2015)]
DNase II-dependent DNA digestion is required for DNA sensing by TLR9.
2015-01-01
[Nat. Commun. 6 , 5853, (2015)]