Lab On a Chip 2015-08-07

Assembly of multiple cell gradients directed by three-dimensional microfluidic channels.

Yiwei Li, Xiaojun Feng, Yachao Wang, Wei Du, Peng Chen, Chao Liu, Bi-Feng Liu

Index: Lab Chip 15 , 3203-10, (2015)

Full Text: HTML

Abstract

Active control over the cell gradient is essential for understanding biological systems and the reconstitution of the functionality of many types of tissues, particularly for organ-on-a-chip. Here, we propose a three-dimensional (3D) microfluidic strategy for generating controllable cell gradients. In this approach, a homogeneous cell suspension is loaded into a 3D stair-shaped PDMS microchannel to generate a cell gradient within 10 min by sedimentation. We demonstrate that cell gradients of various profiles (exponential and piecewise linear) can be achieved by precisely controlling the height of each layer during the fabrication. With sequential seeding, we further demonstrate the generation of two overlapping cell gradients on the same glass substrate with pre-defined designs. The cell gradient-based QD cytotoxicity assay also demonstrated that cell behaviors and resistances were regulated by the changes in cell density. These results reveal that the proposed 3D microfluidic strategy provides a simple and versatile means for establishing controllable gradients in cell density, opening up a new avenue for reconstructing functional tissues.


Related Compounds

Related Articles:

The histidine-rich calcium binding protein (HRC) promotes tumor metastasis in hepatocellular carcinoma and is upregulated by SATB1.

2015-03-30

[Oncotarget 6(9) , 6811-24, (2015)]

mGluR5 in the nucleus accumbens shell regulates morphine-associated contextual memory through reactive oxygen species signaling.

2015-09-01

[Addict. Biol. 20 , 927-40, (2015)]

Involvement of opsins in mammalian sperm thermotaxis.

2015-01-01

[Sci. Rep. 5 , 16146, (2015)]

The role of nitric oxide synthase in an early phase Cd-induced acute cytotoxicity in MCF-7 cells.

2015-03-01

[Biol. Trace Elem. Res. 164(1) , 130-8, (2015)]

The Impact of Vitamin D3 Supplementation on Mechanisms of Cell Calcium Signaling in Chronic Kidney Disease.

2015-01-01

[Biomed Res. Int. 2015 , 807673, (2015)]

More Articles...