BioMetals 2014-08-01

Streptococcus pneumoniae secretes a glyceraldehyde-3-phosphate dehydrogenase, which binds haemoglobin and haem.

Zelene Edith Vázquez-Zamorano, Marco Antonio González-López, María Elena Romero-Espejel, Elisa Irene Azuara-Liceaga, Mavil López-Casamichana, José de Jesús Olivares-Trejo

Index: Biometals 27(4) , 683-93, (2014)

Full Text: HTML

Abstract

Streptococcus pneumoniae is a gram positive encapsulated bacterium responsible of septicaemia and upper respiratory infections in children. This pathogen requires iron to survive in the host, which it can obtain of haemoglobin (Hb) or haem. Only two Hb-binding membrane proteins have been identified up to now. However it is unknown whether this pathogen secretes proteins in order to scavenge iron from the Hb or haem. Therefore, in order to explore these possibilities, cellular growth of S. pneumoniae was tested with several alternative iron supplies. The bacterial growth was supported with iron, Hb and haem. Additionally, S. pneumoniae expressed and secreted a protein of 38 kDa which was purified and characterized as Hb and haem-binding protein. This protein was also identified by mass spectrometry as glyceraldehyde-3-phosphate dehydrogenase. Our overall results suggest that S. pneumoniae secretes a protein capable of binding two usefull iron sources for this bacterium (Hb and haem). This protein could be playing a dynamic role in the success of the invasive and infective processes of this pathogen.


Related Compounds

Related Articles:

Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

2014-08-01

[Mol. Plant 7(8) , 1365-83, (2014)]

Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.

2014-12-11

[Oncogene 33(50) , 5688-96, (2014)]

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells.

2015-04-01

[J. Pineal Res. 58(3) , 310-20, (2015)]

More Articles...