An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin.
Kristin R Wade, Eileen M Hotze, Michael J Kuiper, Craig J Morton, Michael W Parker, Rodney K Tweten
Index: Proc. Natl. Acad. Sci. U. S. A. 112(7) , 2204-9, (2015)
Full Text: HTML
Abstract
β-Barrel pore-forming toxins (βPFTs) form an obligatory oligomeric prepore intermediate before the formation of the β-barrel pore. The molecular components that control the critical prepore-to-pore transition remain unknown for βPFTs. Using the archetype βPFT perfringolysin O, we show that E183 of each monomer within the prepore complex forms an intermolecular electrostatic interaction with K336 of the adjacent monomer on completion of the prepore complex. The signal generated throughout the prepore complex by this interaction irrevocably commits it to the formation of the membrane-inserted giant β-barrel pore. This interaction supplies the free energy to overcome the energy barrier (determined here to be ∼ 19 kcal/mol) to the prepore-to-pore transition by the coordinated disruption of a critical interface within each monomer. These studies provide the first insight to our knowledge into the molecular mechanism that controls the prepore-to-pore transition for a βPFT.
Related Compounds
Related Articles:
The biocompatibility of degradable magnesium interference screws: an experimental study with sheep.
2015-01-01
[Biomed Res. Int. 2015 , 943603, (2015)]
Investigation of a Degradant in a Biologics Formulation Buffer Containing L-Histidine.
2015-08-01
[Pharm. Res. 32 , 2625-35, (2015)]
2015-01-01
[PLoS ONE 10 , e0134768, (2015)]
2014-08-21
[World J. Gastroenterol. 20(31) , 10876-85, (2014)]
Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles.
2015-01-01
[AAPS J. 17(1) , 256-67, (2015)]