Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2014-04-01

Reduced repair capacity of a DNA clustered damage site comprised of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 2-deoxyribonolactone results in an increased mutagenic potential of these lesions.

Siobhan Cunniffe, Peter O'Neill, MarcM Greenberg, MartineE Lomax

Index: Mutat. Res. Fundam. Mol. Mech. Mutagen. 762 , 32-9, (2014)

Full Text: HTML

Abstract

A signature of ionizing radiation is the induction of DNA clustered damaged sites. Non-double strand break (DSB) clustered damage has been shown to compromise the base excision repair pathway, extending the lifetimes of the lesions within the cluster, compared to isolated lesions. This increases the likelihood the lesions persist to replication and thus increasing the mutagenic potential of the lesions within the cluster. Lesions formed by ionizing radiation include 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 2-deoxyribonolactone (dL). dL poses an additional challenge to the cell as it is not repaired by the short-patch base excision repair pathway. Here we show recalcitrant dL repair is reflected in mutations observed when DNA containing it and a proximal 8-oxodGuo is replicated in Escherichia coli. 8-oxodGuo in close proximity to dL on the opposing DNA strand results in an enhanced frequency of mutation of the lesions within the cluster and a 20 base sequence flanking the clustered damage site in an E. coli based plasmid assay. In vitro repair of a dL lesion is reduced when compared to the repair of an abasic (AP) site and a tetrahydrofuran (THF), and this is due mainly to a reduction in the activity of polymerase _, leading to retarded FEN1 and ligase 1 activities. This study has given insights in to the biological effects of clusters containing dL.


Related Compounds

Related Articles:

Comparison of rheological properties, follicular penetration, drug release, and permeation behavior of a novel topical drug delivery system and a conventional cream.

2014-11-01

[Eur. J. Pharm. Biopharm. 88(3) , 614-24, (2015)]

Injectable Peptide Decorated Functional Nanofibrous Hollow Microspheres to Direct Stem Cell Differentiation and Tissue Regeneration.

2015-06-01

[Adv. Funct. Mater. 25(3) , 350-360, (2015)]

Polymer hydrogel functionalized with biodegradable nanoparticles as composite system for controlled drug delivery.

2015-01-09

[Nanotechnology 26(1) , 015602, (2015)]

Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii.

2015-05-01

[J. Bacteriol. 197(9) , 1681-9, (2015)]

Graphene oxide nanosheet wrapped white-emissive conjugated polymer nanoparticles.

2014-05-27

[ACS Nano 8(5) , 4248-56, (2014)]

More Articles...