Endocrinology 2014-07-01

Regulation and function of deiodinases during decidualization in female mice.

Wen-Bo Deng, Xiao-Huan Liang, Ji-Long Liu, Zeng-Ming Yang

Index: Endocrinology 155(7) , 2704-17, (2014)

Full Text: HTML

Abstract

Thyroid dysfunction during human pregnancy is closely related to serious pregnancy outcome. However, the regulation and function of thyroid hormones during early pregnancy are largely unknown. We found that type II deiodinase, an enzyme converting T4 to activated T3, is highly expressed in the mouse uterus on days 3 and 4 of pregnancy. Once the embryo implants into the receptive uterus, type III deiodinase (Dio3), a mainly paternally imprinted gene for inactivating T3, is significantly induced in the stromal cells and accompanied by DNA hypermethylation of intergenic differentially CpG methylation regions in the δ-like 1 homolog-Dio3 imprinting cluster. The concentration of uterine free T3 is actually decreased after embryo implantation. T3 induces Dio3 expression both in vivo and in vitro, suggesting a positive feedback loop. T3 addition or Dio3 knockdown compromises decidualization. These results indicate that the Dio3-mediated local T3 decrease is critical for decidualization of stromal cells during early pregnancy. Furthermore, we found that progesterone regulates Dio3 expression through its cognate receptor both in vivo and in vitro. Additionally, cAMP regulates Dio3 transcription through the protein kinase A-cAMP response element-binding protein pathway. The inhibition of the protein kinase A pathway results in decreased Dio3 expression and impaired decidualization. Dio3 opposite strand (Dio3os) expressed in a similar pattern to Dio3, is transcribed from the opposite strand of Dio3 and fine-tunes Dio3 expression during decidualization. Our data indicate that Dio3 is strongly expressed and tightly controlled during decidualization.


Related Compounds

Related Articles:

The high mobility group A2 protein epigenetically silences the Cdh1 gene during epithelial-to-mesenchymal transition.

2015-01-01

[Nucleic Acids Res. 43(1) , 162-78, (2015)]

Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.

2010-01-01

[Chem. Res. Toxicol. 23 , 171-83, (2010)]

Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).

2011-12-01

[J. Sci. Ind. Res. 65(10) , 808, (2006)]

Developing structure-activity relationships for the prediction of hepatotoxicity.

2010-07-19

[Chem. Res. Toxicol. 23 , 1215-22, (2010)]

A predictive ligand-based Bayesian model for human drug-induced liver injury.

2010-12-01

[Drug Metab. Dispos. 38 , 2302-8, (2010)]

More Articles...