Differentiation potential of o bombay human-induced pluripotent stem cells and human embryonic stem cells into fetal erythroid-like cells.
Fatemeh Ganji, Saeid Abroun, Hossein Baharvand, Nasser Aghdami, Marzieh Ebrahimi
Index: Cell J. 16(4) , 426-39, (2015)
Full Text: HTML
Abstract
There is constant difficulty in obtaining adequate supplies of blood components, as well as disappointing performance of "universal" red blood cells. Advances in somatic cell reprogramming of human-induced pluripotent stem cells (hiPSCs) have provided a valuable alternative source to differentiate into any desired cell type as a therapeutic promise to cure many human disease.In this experimental study, we examined the erythroid differentiation potential of normal Bombay hiPSCs (B-hiPSCs) and compared results to human embryonic stem cell (hESC) lines. Because of lacking ABO blood group expression in B-hiPSCs, it has been highlighted as a valuable source to produce any cell type in vitro.Similar to hESC lines, hemangioblasts derived from B-hiPSCs expressed approximately 9% KDR(+)CD31(+) and approximately 5% CD31(+)CD34(+). In semisolid media, iPSC and hESC-derived hemangioblast formed mixed type of hematopoietic colony. In mixed colonies, erythroid progenitors were capable to express CD71(+)GPA(+)HbF(+) and accompanied by endothelial cells differentiation.Finally, iPS and ES cells have been directly induced to erythropoiesis without hemangioblast formation that produced CD71(+)HbF(+) erythroid cells. Although we observed some variations in the efficiency of hematopoietic differentiation between iPSC and ES cells, the pattern of differentiation was similar among all three tested lines.
Related Compounds
Related Articles:
2015-01-01
[PLoS ONE 10 , e0131985, (2015)]
Compounded preparations with nystatin for oral and oromucosal administration.
2013-01-01
[Acta Pol. Pharm. 70(4) , 759-62, (2013)]
2014-12-01
[Pharm. Dev. Technol. 19(8) , 976-86, (2014)]
2013-09-01
[Drug Dev. Ind. Pharm. 39(9) , 1284-90, (2013)]
Formulation and drying of miconazole and itraconazole nanosuspensions.
2013-02-25
[Int. J. Pharm. 443(1-2) , 209-20, (2013)]