Delphinidin chloride, an anthocyanidin, is isolated from berries and red wine. Delphinidin chloride shows endothelium-dependent vasorelaxation. Delphinidin chloride also can modulate JAK/STAT3 and MAPKinase signaling to induce apoptosis in HCT116 cells[1][2][3].
Lorpucitinib is a Gut-Restricted JAK Inhibitor for the research of Inflammatory Bowel Disease[1].
CHZ868 is a type II JAK2 inhibitor with an IC50 of 0.17 μM in EPOR JAK2 WT Ba/F3 cell.
JAK1/TYK2-IN-1 is a dual inhibitor of TYK2 and JAK1 (IC50 = 29 and 41 nM respectively).
Povorcitinib is a potent and selective inhibitor of JAK1. Povorcitinib has the potential for the research of disease selected from cutaneous lupus erythematosus (CLE) and Lichen planus (LP) (extracted from patent WO2021076124A1)[1].
Protosappanin A (PTA), an immunosuppressive ingredient and major biphenyl compound isolated from Caesalpinia sappan L, suppresses JAK2/STAT3-dependent inflammation pathway through down-regulating the phosphorylation of JAK2 and STAT3[1].
Momelotinib-d10 (CYT387-d10) is the deuterium labeled Momelotinib (HY-10961). Momelotinib (CYT387) is an orally active and ATP-competitive inhibitor of JAK1/JAK2 with IC50a of 11 nM and 18 nM,respectively, shows much less activity against JAK3[1][2].
SD-1029 (NSC 371488) is a potent inhibitor of Stat3 activation, suppresses EGFP-Stat3 nuclear translocation at 10 uM in both BHK-21 and U2-OS cells; inhibits Stat3-mediated antiapoptotic protein expression (Bcl-XL, MCL-1, and survivin), and suppresses phosphotyrosine levels of JAK2; inhibits IL-6 or oncostatin-induced Stat3 nuclear translocation at micromolar range, enhances apoptosis induced by paclitaxel in human cancer cells.
25-Deacetylcucurbitacin A is a Cucurbitane-Type triterpenoid and has the potential to be an anti-cancer agent and JAK/STAT3 signaling pathway inhibitor[1].
Nezulcitinib (TD-0903) is an inhaled and lung-selective pan-Janus kinase (JAK) inhibitor. Nezulcitinib can be used for the research of COVID-19 associated acute lung injury and impaired oxygenation[1][2].
SD-1008 is a potent JAK inhibitor. SD-1008 inhibits tyrosyl phosphorylation of STAT3, JAK2 and Src. SD-1008 also reduces STAT3-dependent luciferase activity. SD-1008 enhances apoptosis induced by Paclitaxel in ovarian cancer cells via directly blocking the JAK-STAT3 signaling pathway[1].
Reticuline, isolated from Litsea cubeba, shows anti-inflammatory effects through JAK2/STAT3 and NF-κB signaling pathways. Reticuline inhibits mRNA expressions of TNF-α, and IL-6 and reduces the phosphorylation levels of JAK2 and STAT3[1].
Momelotinib-d8 (CYT387-d8) is the deuterium labeled Momelotinib (HY-10961). Momelotinib (CYT387) is an orally acitve and ATP-competitive inhibitor of JAK1/JAK2 with IC50a of 11 nM and 18 nM,respectively, shows much less activity against JAK3[1][2].
Itacitinib is a potent and selective inhibitor of JAK1, with >20-fold selectivity for JAK1 over JAK2 and >100-fold over JAK3 and TYK2; Itacitinib is used in the research of myelofibrosis.
Momelotinib-3,3,5,5-d6 (CYT387-3,3,5,5-d6) is the deuterium labeled Momelotinib (HY-10961). Momelotinib has inhibitory activity for JAK1/JAK2[1][2].
Tofacitinib is a JAK1/2/3 inhibitor with IC50s of 1, 20, and 112 nM, respectively.
Momelotinib-3,3,5,5-d4 (CYT387-3,3,5,5-d4) is the deuterium labeled Momelotinib (HY-10961). Momelotinib has inhibitory activity for JAK1/JAK2[1][2].
Momelotinib-2,2,6,6-d6 (CYT387-2,2,6,6-d6) is the deuterium labeled Momelotinib (HY-10961). Momelotinib has inhibitory activity for JAK1/JAK2[1][2].
Benzene hexabromide, a bromohydrocarbon, is a potent inhibitor of JAK2 tyrosine kinase autophosphorylation.
Rovadicitinib hydrochloride is a JAK inhibitor with an IC50 value <20 nM. Rovadicitinib hydrochloride also exhibits anti-inflammatory activity[1][2].
Momelotinib-2,2,6,6-d4 (CYT387-2,2,6,6-d4) is the deuterium labeled Momelotinib (HY-10961). Momelotinib (CYT387) is an orally acitve and ATP-competitive JAK1/JAK2 inhibitor with IC50s of 11 nM and 18 nM, respectively[1][2].
BI-1622 is an orally active, potent and highly selective HER2 (ERBB2) inhibitor, with an IC50 of 7 nM. BI-1622 shows greater than 25-fold selectivity over EGFR. BI-1622 shows high antitumor efficacy in vivo in xenograft mouse tumor models with engineered H2170 and PC9 cells and had a favorable drug metabolism and pharmacokinetics profile[1].
JAK1-IN-4 is a potent and selective JAK1 inhibitor, with IC50s of 85 nM, 12.8 μM and >30 μM for JAK1, JAK2, and JAK3, respectively. JAK1-IN-4 inhibits STAT3 phosphorylation in NCI-H 1975 cells (IC50, 227 nM)[1].
Momelotinib-d2 (CYT387-d2) is the deuterium labeled Momelotinib (HY-10961). Momelotinib (CYT387) is an orally active and ATP-competitive inhibitor of JAK1/JAK2 with IC50a of 11 nM and 18 nM,respectively, shows much less activity against JAK3[1][2].
JAK-IN-1 is a JAK1/2/3 inhibitor with IC50s of 0.26, 0.8 and 3.2 nM, respectively. JAK-IN-1 shows improved selectivity for JAK3 over JAK1.
Filgotinib (maleate) is a selective and orally active JAK1 inhibitor with IC50 of 10 nM, 28 nM, 810 nM and 116 nM for JAK1, JAK2, JAK3 and TYK2, respectively. Filgotinib (maleate) can be used for rheumatoid arthritis (RA) and Crohn's disease research[1][2].
DPP is a Platinum(IV) complex, bearing pterostilbene-derived axial ligand. DPP inhibit the JAK2-STAT3 pathway in breast cancer (BC) cells with antiproliferative activity, and activates caspase-3 and cleaved poly ADP-ribose polymerase to induces apoptosis. DPP promotes the maturation and antigen presentation of dendritic cells, and exhibits in vivo safety[1].
Oclacitinib is a novel JAK inhibitor. Oclacitinib is most potent at inhibiting JAK1 (IC50=10 nM).
JAK kinase-IN-1 (Example 1) is a JAK inhibitor. JAK kinase-IN-1 inhibits TYK2, JAK1, JAK2 and JAK3 with IC50 values of 4.2 nM, 32 nM, 27 nM, 3473 nM respectively[1].
JAK3/BTK-IN-3 is a potent inhibitor of JAK3/BTK. BTK and JAK3 are two important targets for autoimmune diseases. Simultaneous inhibition of the BTK/JAK3 signalling pathway exhibits synergistic effects. JAK3/BTK-IN-3 has the potential for the research of JAK3 kinase and/or BTK-related diseases (extracted from patent WO2021147952A1, compound 009)[1]