The terpenoids are a large and diverse class of naturally occurring organic chemicals, derived from five-carbon isoprene units assembled and modified in thousands of ways. Most are multicyclic structures that differ from one another not only in functional groups but also in their basic carbon skeletons. They can be classified according to the number of isoprene units used: Hemiterpenoids, Monoterpenoids, Sesquiterpenoids, Diterpenoids, Sesterterpenoids, Triterpenoids, Tetraterpenoids. These lipids can be found in all classes of living things, and are the largest group of natural products. Plant terpenoids are used extensively for their aromatic qualities and play a role in traditional herbal remedies. Terpenoids contribute to the scent of eucalyptus, the flavors of cinnamon, cloves, and ginger, the yellow color in sunflowers, and the red color in tomatoes.


Anti-infection >
Arenavirus Bacterial CMV Enterovirus Filovirus Fungal HBV HCV HIV HSV Influenza Virus Parasite Reverse Transcriptase RSV SARS-CoV
Antibody-drug Conjugate >
ADC Cytotoxin ADC Linker Drug-Linker Conjugates for ADC PROTAC-linker Conjugate for PAC
Apoptosis >
Apoptosis Bcl-2 Family c-Myc Caspase DAPK Ferroptosis IAP MDM-2/p53 PKD RIP kinase Survivin Thymidylate Synthase TNF Receptor
Autophagy >
Autophagy LRRK2 ULK Mitophagy
Cell Cycle/DNA Damage >
Antifolate APC ATM/ATR Aurora Kinase Casein Kinase CDK Checkpoint Kinase (Chk) CRISPR/Cas9 Deubiquitinase DNA Alkylator/Crosslinker DNA-PK DNA/RNA Synthesis Eukaryotic Initiation Factor (eIF) G-quadruplex Haspin Kinase HDAC HSP IRE1 Kinesin LIM Kinase (LIMK) Microtubule/Tubulin Mps1 Nucleoside Antimetabolite/Analog p97 PAK PARP PERK Polo-like Kinase (PLK) PPAR RAD51 ROCK Sirtuin SRPK Telomerase TOPK Topoisomerase Wee1
Cytoskeleton >
Arp2/3 Complex Dynamin Gap Junction Protein Integrin Kinesin Microtubule/Tubulin Mps1 Myosin PAK
Epigenetics >
AMPK Aurora Kinase DNA Methyltransferase Epigenetic Reader Domain HDAC Histone Acetyltransferase Histone Demethylase Histone Methyltransferase JAK MicroRNA PARP PKC Sirtuin Protein Arginine Deiminase
GPCR/G Protein >
5-HT Receptor Adenosine Receptor Adenylate Cyclase Adiponectin Receptor Adrenergic Receptor Angiotensin Receptor Bombesin Receptor Bradykinin Receptor Cannabinoid Receptor CaSR CCR CGRP Receptor Cholecystokinin Receptor CRFR CXCR Dopamine Receptor EBI2/GPR183 Endothelin Receptor GHSR Glucagon Receptor Glucocorticoid Receptor GNRH Receptor GPCR19 GPR109A GPR119 GPR120 GPR139 GPR40 GPR55 GPR84 Guanylate Cyclase Histamine Receptor Imidazoline Receptor Leukotriene Receptor LPL Receptor mAChR MCHR1 (GPR24) Melatonin Receptor mGluR Motilin Receptor Neurokinin Receptor Neuropeptide Y Receptor Neurotensin Receptor Opioid Receptor Orexin Receptor (OX Receptor) Oxytocin Receptor P2Y Receptor Prostaglandin Receptor Protease-Activated Receptor (PAR) Ras RGS Protein Sigma Receptor Somatostatin Receptor TSH Receptor Urotensin Receptor Vasopressin Receptor Melanocortin Receptor
Immunology/Inflammation >
Aryl Hydrocarbon Receptor CCR Complement System COX CXCR FLAP Histamine Receptor IFNAR Interleukin Related IRAK MyD88 NO Synthase NOD-like Receptor (NLR) PD-1/PD-L1 PGE synthase Salt-inducible Kinase (SIK) SPHK STING Thrombopoietin Receptor Toll-like Receptor (TLR) Arginase
JAK/STAT Signaling >
EGFR JAK Pim STAT
MAPK/ERK Pathway >
ERK JNK KLF MAP3K MAP4K MAPKAPK2 (MK2) MEK Mixed Lineage Kinase MNK p38 MAPK Raf Ribosomal S6 Kinase (RSK)
Membrane Transporter/Ion Channel >
ATP Synthase BCRP Calcium Channel CFTR Chloride Channel CRAC Channel CRM1 EAAT2 GABA Receptor GlyT HCN Channel iGluR Monoamine Transporter Monocarboxylate Transporter Na+/Ca2+ Exchanger Na+/HCO3- Cotransporter Na+/K+ ATPase nAChR NKCC P-glycoprotein P2X Receptor Potassium Channel Proton Pump SGLT Sodium Channel TRP Channel URAT1
Metabolic Enzyme/Protease >
15-PGDH 5 alpha Reductase 5-Lipoxygenase Acetyl-CoA Carboxylase Acyltransferase Adenosine Deaminase Adenosine Kinase Aldehyde Dehydrogenase (ALDH) Aldose Reductase Aminopeptidase Angiotensin-converting Enzyme (ACE) ATGL ATP Citrate Lyase Carbonic Anhydrase Carboxypeptidase Cathepsin CETP COMT Cytochrome P450 Dipeptidyl Peptidase Dopamine β-hydroxylase E1/E2/E3 Enzyme Elastase Enolase FAAH FABP Factor Xa Farnesyl Transferase Fatty Acid Synthase (FAS) FXR Glucokinase GSNOR Gutathione S-transferase HCV Protease Hexokinase HIF/HIF Prolyl-Hydroxylase HIV Integrase HIV Protease HMG-CoA Reductase (HMGCR) HSP Indoleamine 2,3-Dioxygenase (IDO) Isocitrate Dehydrogenase (IDH) Lactate Dehydrogenase LXR MAGL Mineralocorticoid Receptor Mitochondrial Metabolism MMP Nampt NEDD8-activating Enzyme Neprilysin PAI-1 PDHK PGC-1α Phosphatase Phosphodiesterase (PDE) Phospholipase Procollagen C Proteinase Proteasome Pyruvate Kinase RAR/RXR Renin ROR Ser/Thr Protease SGK Stearoyl-CoA Desaturase (SCD) Thrombin Tryptophan Hydroxylase Tyrosinase Xanthine Oxidase
Neuronal Signaling >
5-HT Receptor AChE Adenosine Kinase Amyloid-β Beta-secretase CaMK CGRP Receptor COMT Dopamine Receptor Dopamine Transporter FAAH GABA Receptor GlyT iGluR Imidazoline Receptor mAChR Melatonin Receptor Monoamine Oxidase nAChR Neurokinin Receptor Opioid Receptor Serotonin Transporter γ-secretase
NF-κB >
NF-κB IKK Keap1-Nrf2 MALT1
PI3K/Akt/mTOR >
Akt AMPK ATM/ATR DNA-PK GSK-3 MELK mTOR PDK-1 PI3K PI4K PIKfyve PTEN
PROTAC >
PROTAC E3 Ligase Ligand-Linker Conjugate Ligand for E3 Ligase PROTAC Linker PROTAC-linker Conjugate for PAC
Protein Tyrosine Kinase/RTK >
Ack1 ALK Bcr-Abl BMX Kinase Btk c-Fms c-Kit c-Met/HGFR Discoidin Domain Receptor DYRK EGFR Ephrin Receptor FAK FGFR FLT3 IGF-1R Insulin Receptor IRAK Itk PDGFR PKA Pyk2 ROS Src Syk TAM Receptor Trk Receptor VEGFR
Stem Cell/Wnt >
Casein Kinase ERK Gli GSK-3 Hedgehog Hippo (MST) JAK Notch Oct3/4 PKA Porcupine ROCK sFRP-1 Smo STAT TGF-beta/Smad Wnt YAP β-catenin γ-secretase
TGF-beta/Smad >
TGF-beta/Smad PKC ROCK TGF-β Receptor
Vitamin D Related >
VD/VDR
Others >
Androgen Receptor Aromatase Estrogen Receptor/ERR Progesterone Receptor Thyroid Hormone Receptor Others

Artemether

Artemether is an antimalarial for the treatment of resistant strains of falciparum malaria.Target: AntiparasiticArtemether is an antimalarial agent used to treat acute uncomplicated malaria. It is administered in combination with lumefantrine for improved efficacy. Artemether exhibits the highest activity against juvenile stages of the parasites, while adult worms are significantly less susceptible. There was no indication of neurotoxicity following repeated high doses of artemether given fortnightly for up to 5 months. Artemether-integrated with other control strategies-has considerable potential for reducing the current burden of schistosomiasis in different epidemiological settings [1]. There were remarkably inhibitory effects of artmeter on brain glioma growth and angiogenesis in SD rats and the mechanism that artemether inhibited brain glioma growth might be penetrating the blood-brain barrier and inhibiting angiogenesis [2].

  • CAS Number: 71963-77-4
  • MF: C16H26O5
  • MW: 298.375
  • Catalog: Parasite
  • Density: 1.2±0.1 g/cm3
  • Boiling Point: 357.5±42.0 °C at 760 mmHg
  • Melting Point: 86-89ºC
  • Flash Point: 140.5±27.8 °C

Anemoside B4

Anemoside B4 is Pulsatilla koreana Nakai that have many numerous biological effects in vitro, including enhancing hypoglycemic, anti-tumor, neuroprotective and anti-angiogenic activity. AB4 can inhibit the secretion of IL-10; SSA, SSD and PNS up-regulated IL-2 expression.[1] AB4, with IC50 value more than 390 ug/mL. Anemoside B4 inhibits cell proliferation.[2] Anemoside B4 can significantly suppress the secretion of the inflammatory factor E-selectin by endothelial cells. [3]

  • CAS Number: 129741-57-7
  • MF: C59H96O26
  • MW: 1221.378
  • Catalog: Others
  • Density: 1.5±0.1 g/cm3
  • Boiling Point: N/A
  • Melting Point: 208-215ºC
  • Flash Point: N/A

Isosteviol

Isosteviol is a derivative of stevioside, a constituent of Stevia rebaudiana, which is commonly used as a noncaloric sugar substitute in Japan and Brazil.Target:Isosteviol dose-dependently relaxed the vasopressin (10-8 M)-induced vasoconstriction in isolated aortic rings with or without endothelium. However, in the presence of potassium chloride (3×10-2 M), the vasodilator effect of isosteviol on arterial strips disappeared. Only the inhibitors specific for the ATP-sensitive potassium (KATP) channel or small conductance calcium-activated potassium (SKCa) channel inhibited the vasodilator effect of isosteviol in isolated aortic rings contracted with 10-8 M vasopressin [1]. The attenuation by isosteviol of the vasopressin- and phenylephrine-induced increase in [Ca (2+)]i was inhibited by glibenclamide, apamin and 4-aminopyridine but not by charybdotoxin. Furthermore, the inhibitory action of isosteviol on [Ca (2+)]i was blocked when A7r5 cells co-treated with glibenclamide and apamin in conjunction with 4-aminopyridine were present [2]. Isosteviol (1-100 micromol/l) inhibits angiotensin-II-induced DNA synthesis and endothelin-1 secretion. Measurements of 2'7'-dichlorofluorescin diacetate, a redox-sensitive fluorescent dye, showed an isosteviol-mediated inhibition of intracellular reactive oxygen species generated by the effects of angiotensin II [3].

  • CAS Number: 27975-19-5
  • MF: C20H30O3
  • MW: 318.450
  • Catalog: Cardiovascular Disease
  • Density: 1.2±0.1 g/cm3
  • Boiling Point: 455.6±38.0 °C at 760 mmHg
  • Melting Point: 228.0 to 232.0 °C
  • Flash Point: 243.5±23.3 °C

Ginsenoside Rg2

Ginsenoside Rg2 is one of the major active components of ginseng. Ginsenoside Rg2 acts as a NF-κB inhibitor. Ginsenoside Rg2 also reduces Aβ1-42 accumulation.

  • CAS Number: 52286-74-5
  • MF: C42H72O13
  • MW: 785.013
  • Catalog: Amyloid-β
  • Density: 1.3±0.1 g/cm3
  • Boiling Point: 881.0±65.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 486.6±34.3 °C

Ginsenoside Rg5

Ginsenoside Rg5 is the main component of Red ginseng. Ginsenoside blocks binding of IGF-1 to its receptor with an IC50 of ~90 nM. Ginsenoside Rg5 also inhibits the mRNA expression of COX-2 via suppression of the DNA binding activities of NF-κB p65.

  • CAS Number: 186763-78-0
  • MF: C42H70O12
  • MW: 766.998
  • Catalog: IGF-1R
  • Density: 1.3±0.1 g/cm3
  • Boiling Point: 855.6±65.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 471.2±34.3 °C

Isoastragaloside I

Isoastragaloside I is a natural compound from the medicinal herb Radix Astragali; possesses the activity of elevating adiponectin production.IC50 value:Target:Astragaloside II and isoastragaloside I selectively increased adiponectin secretion in primary adipocytes without any obvious effects on a panel of other adipokines. Furthermore, an additive effect on induction of adiponectin production was observed between these two compounds and rosiglitazone, a thiazolidinedione class of insulin-sensitizing drugs. Chronic administration of astragaloside II and isoastragaloside I in both dietary and genetic obese mice significantly elevated serum levels of total adiponectin and selectively increased the composition of its high molecular weight oligomeric complex.

  • CAS Number: 84676-88-0
  • MF: C45H72O16
  • MW: 869.044
  • Catalog: Metabolic Disease
  • Density: 1.4±0.1 g/cm3
  • Boiling Point: 920.6±65.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 264.7±27.8 °C

Corosolic acid

Corosolic acid isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity.IC50 value: 26.8 μg/ml in vitroTarget:In vitro: Corosolic acid displayed about the same potent cytotoxic activity as ursolic acid against several human cancer cell lines. In addition, the compound displayed antagonistic activity against the phorbol ester-induced morphological modification of K-562 leukemic cells, indicating the suppression of protein kinase C (PKC) activity by the cytotoxic compound. The compound showed PKC inhibition with dose-dependent pattern in an in vitro PKC assay [1]. MTT method was used to detect the influence of corosolic acid on A549 lung cancer cell growth in vitro under different concentrations. The value of IC50 was 26.8 μg/ml in vitro experiment. Corosolic acid of different doses had certain therapeutic effects on A549 solid tumor, the content of VEGF and CD34 proteins also had different degrees of influence [2]. Corosolic acid induced apoptosis in CT-26 cells, mediated by the activation of caspase-3. It inhibited the proliferation and tube formation of human umbilical vein endothelial cells and human dermal lymphatic microvascular endothelial cells, decreased the proliferation and migration of human umbilical vein endothelial cells stimulated by angiopoietin-1 [3]. In vivo: A mouse colon carcinoma CT-26 animal model was employed to determine the in vivo anti-angiogenic and anti-lymphangiogenic effects of corosolic acid.

  • CAS Number: 4547-24-4
  • MF: C30H48O4
  • MW: 472.700
  • Catalog: Autophagy
  • Density: 1.1±0.1 g/cm3
  • Boiling Point: 573.3±50.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 314.6±26.6 °C

Atractylenolide I

Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent.

  • CAS Number: 73069-13-3
  • MF: C15H18O2
  • MW: 230.302
  • Catalog: Toll-like Receptor (TLR)
  • Density: 1.1±0.1 g/cm3
  • Boiling Point: 405.0±44.0 °C at 760 mmHg
  • Melting Point: 121-123 °C
  • Flash Point: 170.8±25.9 °C

Ginsenoside Rk3

Ginsenoside Rk3 is present in the roots Panax notoginseng herbs. Ginsenoside Rk3 significantly inhibits TNF-α-induced NF-κB transcriptional activity, with an IC50 of 14.24±1.30 μM in HepG2 cells

  • CAS Number: 364779-15-7
  • MF: C36H60O8
  • MW: 620.857
  • Catalog: Cardiovascular Disease
  • Density: 1.2±0.1 g/cm3
  • Boiling Point: 722.4±60.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 390.7±32.9 °C

Oleanic acid

Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

  • CAS Number: 508-02-1
  • MF: C30H48O3
  • MW: 456.700
  • Catalog: Autophagy
  • Density: 1.1±0.1 g/cm3
  • Boiling Point: 553.5±50.0 °C at 760 mmHg
  • Melting Point: >300 °C(lit.)
  • Flash Point: 302.6±26.6 °C

(-)-Borneol

(-)-Borneol has a highly efficacious positive modulating action at GABA receptor with an EC50 of 237 μM.

  • CAS Number: 464-45-9
  • MF: C10H18O
  • MW: 154.249
  • Catalog: GABA Receptor
  • Density: 1.0±0.1 g/cm3
  • Boiling Point: 212.0±0.0 °C at 760 mmHg
  • Melting Point: 206-209 °C
  • Flash Point: 65.6±0.0 °C

(+/-)-Camphor

Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

  • CAS Number: 76-22-2
  • MF: C10H16O
  • MW: 152.233
  • Catalog: TRP Channel
  • Density: 1.0±0.1 g/cm3
  • Boiling Point: 207.4±0.0 °C at 760 mmHg
  • Melting Point: 175-177 °C(lit.)
  • Flash Point: 64.4±0.0 °C

gracillin

Gracillin is a kind of steroidal saponin isolated from the root bark of wild yam Dioscorea nipponica with antitumor agent.Gracillin could induce cell cycle arrest, oxidative stress, and apoptosis in HL60 cells.[1]

  • CAS Number: 19083-00-2
  • MF: C45H72O17
  • MW: 885.043
  • Catalog: Cancer
  • Density: 1.4±0.1 g/cm3
  • Boiling Point: N/A
  • Melting Point: 290-293℃ (DEC.)
  • Flash Point: N/A

Morroniside

Morroniside has neuroprotective effect by inhibiting neuron apoptosis and MMP2/9 expression.

  • CAS Number: 25406-64-8
  • MF: C17H26O11
  • MW: 406.382
  • Catalog: Metabolic Disease
  • Density: 1.5±0.1 g/cm3
  • Boiling Point: 635.6±55.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 227.0±25.0 °C

(+)-Borneol

(+)-Borneol (d-Borneol) is a natural bicyclic monoterpene used for analgesia and anesthesia in traditional Chinese medicine; enhances GABA receptor activity with an EC50 of 248 μM.

  • CAS Number: 464-43-7
  • MF: C10H18O
  • MW: 154.249
  • Catalog: GABA Receptor
  • Density: 1.0±0.1 g/cm3
  • Boiling Point: 212.0±0.0 °C at 760 mmHg
  • Melting Point: 206-209ºC(lit.)
  • Flash Point: 80.7±10.9 °C

Pachymic acid

Pachymic acid is a lanostrane-type triterpenoid from P. cocos. Pachymic acid inhibits Akt and ERK signaling pathways.

  • CAS Number: 29070-92-6
  • MF: C33H52O5
  • MW: 528.763
  • Catalog: Cancer
  • Density: 1.1±0.1 g/cm3
  • Boiling Point: 612.2±55.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 184.7±25.0 °C

Cucurbitacin B

Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids; could repress cancer cell progression.IC50 value:Target: anticancer natural compoundin vitro: Cucurbitacin-B inhibited growth and modulated expression of cell-cycle regulators in SHSY5Y cells. At the molecular level, we found that Cucurbitacin-B inhibited AKT signaling activation through up-regulation of PTEN [1]. CuB induced apoptosis of A549 cells in a -concentration-dependent manner, as determined by fluorescence microscopy, flow cytometry and transmission electron microscopy. CuB dose-dependently inhibited lung cancer cell proliferation, with cell cycle inhibition and cyclin B1 downregulation. Apoptosis induced by CuB was shown to be associated with cytochrome c release, B-cell lymphoma 2 downregulation and signal transducer and activator of transcription 3 pathway inhibition [2]. CuB inhibited ITGA6 and ITGB4 (integrin α6 and integrin β4), which are overexpressed in breast cancer. Furthermore, CuB also induced the expression of major ITGB1and ITGB3, which are known to cause integrin-mediated cell death [3]. Cuc B treatment caused DNA double-strand breaks (DSBs) without affecting the signal transducer and activator of transcription 3 (STAT3), the potential molecular target for Cuc B. Cuc B triggers ATM-activated Chk1-Cdc25C-Cdk1, which could be reversed by both ATM siRNA and Chk1 siRNA. Cuc B also triggers ATM-activated p53-14-3-3-σ pathways, which could be reversed by ATM siRNA [4].in vivo: Efficacy of CuB was tested in vivo using two different orthotopic models of breast cancer. MDA-MB-231 and 4T-1 cells were injected orthotopically in the mammary fat pad of female athymic nude mice or BALB/c mice respectively. Our results showed that CuB administration inhibited MDA-MB-231 orthotopic tumors by 55%, and 4T-1 tumors by 40%. The 4T-1 cells represent stage IV breast cancer and form very aggressive tumors [3].

  • CAS Number: 6199-67-3
  • MF: C32H46O8
  • MW: 558.703
  • Catalog: Autophagy
  • Density: 1.2±0.1 g/cm3
  • Boiling Point: 699.3±55.0 °C at 760 mmHg
  • Melting Point: 184-186ºC
  • Flash Point: 218.8±25.0 °C

3-O-Acetyl-11-keto-beta-boswellic acid

Acetyl-11-Keto-β-Boswellic Acid (AKBA) is an active triterpenoid compound from the extract of Boswellia serrate; a novel Nrf2 activator.IC50 value:Target: Nrf2 activatorin vitro: AKBA significantly reduced infarct volumes and apoptotic cells, and also increased neurologic scores by elevating the Nrf2 and HO-1 expression in brain tissues in middle cerebral artery occlusion (MCAO) rats at 48 hours post reperfusion. In primary cultured neurons, AKBA increased the Nrf2 and HO-1 expression, which provided protection against OGD-induced oxidative insult. Additionally, AKBA treatment increased Nrf2 binding activity to antioxidant-response elements (ARE) [1]. AKBA significantly inhibited human colon adenocarcinoma growth, showing arrest of the cell cycle in G1-phase and induction of apoptosis[3]. AKBA triggered significant lipolysis in 3T3-L1 adipocytes as shown by reduced neutral lipids in cytosol and increased free fatty acids in culture medium. Increased lipolysis by AKBA was accompanied by up-regulation of lipolytic enzymes, adipocyte triglyceride lipase (ATGL) and hormone sensitive lipase (HSL), and a decreased expression of lipid droplet stability regulator perilipin. In addition, AKBA treatment reduced phenotypic markers of mature adipocyte aP2, adiponectin and glut-4 in mature adipocytes [5].in vivo: AKBA significantly prevented the formation of intestinal adenomatous polyps without toxicity to mice. AKBA's activity both in the prevention of small intestinal and colonic polyps was more potently than aspirin. Histopathologic examination revealed that AKBA's effect, that is the reduction of polyp size and degree of dysplasia, was more prominent in larger sized polyps, especially those originating in colon [2]. AKBA administration in mice effectively delayed the growth of HT-29 xenografts without signs of toxicity. The activity of AKBA was more potent than that of aspirin [3]. AKBA exhibited anti-cancer activity in vitro and in vivo. With oral application in mice, AKBA significantly inhibited SGC-7901 and MKN-45 xenografts without toxicity [4].

  • CAS Number: 67416-61-9
  • MF: C32H48O5
  • MW: 512.721
  • Catalog: HIF/HIF Prolyl-Hydroxylase
  • Density: 1.1±0.1 g/cm3
  • Boiling Point: 600.3±55.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 184.4±25.0 °C

Echinocystic acid

Echinocystic acid a pentacyclic triterpene isolated from the fruits of Gleditsia sinensis Lam, has potent antioxidant, anti-inflammatory and anti-tumor properties. In vitro: Echinocystic acid (EA) inhibit the formation of osteoclast. EA inhibit RANKL-induced NF-κB activation and ERK phosphorylation in BMMs. [1] EA inhibit IL-1β-induced inflammation in chondrocytes. [2]In vivo: Echinocystic acid reduces reserpine-induced pain/depression dyad in mice. [3]

  • CAS Number: 510-30-5
  • MF: C30H48O4
  • MW: 472.700
  • Catalog: Inflammation/Immunology
  • Density: 1.1±0.1 g/cm3
  • Boiling Point: 585.0±50.0 °C at 760 mmHg
  • Melting Point: 299-300ºC
  • Flash Point: 321.6±26.6 °C

phorbol

Phorbol is a highly toxic diterpene, whose esters have important biological properties.

  • CAS Number: 17673-25-5
  • MF: C20H28O6
  • MW: 364.43300
  • Catalog: Cancer
  • Density: 1.415 g/cm3
  • Boiling Point: 572ºC at 760 mmHg
  • Melting Point: 250-251ºC DECOMP
  • Flash Point: 313.8ºC

Ginsenoside Rc

Ginsenoside Rc, one of major Ginsenosides from Panax ginseng, enhances GABA receptorA (GABAA)-mediated ion channel currents (IGABA). Ginsenoside Rc inhibits the expression of TNF-α and IL-1β.

  • CAS Number: 11021-14-0
  • MF: C53H90O22
  • MW: 1079.269
  • Catalog: TNF Receptor
  • Density: 1.4±0.1 g/cm3
  • Boiling Point: 1128.3±65.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 636.2±34.3 °C

Hederagenin

Hederagenin is a triterpenoid saponin. It can inhibit LPS-stimulated expression of iNOS, COX-2, and NF-κBHederagenin can Exhibits multiple pharmacological activities in the treatment of hyperlipidemia, antilipid peroxidation, antiplatelet aggregation, liver protection, antidepression, anti-inflammation.[1]In vitro:1) Hederagenin can correct the imbalance of endothelial function by inhibiting the release of large amounts of iNOS and increasing eNOS contents and inhibits the IKKβ/NF-κB signaling pathway to reduce the release of IL-6, IFN-γ, TNF-α, and other inflammatory factors. [1]2) The EC50 of hederagenin is 39 ± 6 μM in A549 cancer cell line, but it's inactive for DLD-1 cells. [2]3) Hederagenin inhibited LPS-induced production of NO, PGE2and cytokines in cells.[3]4) Hederagenin had an anti-edema effect on the CA-induced mouse hind paw edema assay. [3]5) Hederagenin inhibited the CA-induced increase in skin thicknesses. [3]In vivo: The rats in the hederagenin group were administered hederagenin at 20 mg/kg/d via gavage.(More details please refer to the protocol below). In AS rat models induced by a high-lipid diet plus VD3, hederagenin can effectively reduce serum lipid, ALT, and AST levels, in addition to improving liver function, relieving high blood coagulation, and slowing blood flow and stasis by improving blood rheology. [1]

  • CAS Number: 465-99-6
  • MF: C30H48O4
  • MW: 472.700
  • Catalog: Cancer
  • Density: 1.1±0.1 g/cm3
  • Boiling Point: 589.4±50.0 °C at 760 mmHg
  • Melting Point: 332 - 334ºC
  • Flash Point: 324.3±26.6 °C

Siamenoside I

Siamenoside I is one of the mogrosides that has several kinds of bioactivities.

  • CAS Number: 126105-12-2
  • MF: C54H92O24
  • MW: 1125.294
  • Catalog: Others
  • Density: 1.5±0.1 g/cm3
  • Boiling Point: 1179.3±65.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 667.0±34.3 °C

Beta-Carotene

Beta Carotene is an organic compound and classified as a terpenoid. It is a precursor (inactive form) of vitamin A.Target: OthersBeta Carotene is a strongly colored red-orange pigment abundant in plants and fruits.β-Carotene is biosynthesized from geranylgeranyl pyrophosphate. It is a member of the carotenes, which are tetraterpenes, synthesized biochemically from eight isoprene units and thus having 40 carbons. Among this general class of carotenes, β-carotene is distinguished by having beta-rings at both ends of the molecule. Absorption of β-carotene is enhanced if eaten with fats, as carotenes are fat soluble [1, 2].

  • CAS Number: 7235-40-7
  • MF: C40H56
  • MW: 536.873
  • Catalog: Metabolic Disease
  • Density: 0.9±0.1 g/cm3
  • Boiling Point: 654.7±22.0 °C at 760 mmHg
  • Melting Point: 178-179ºC
  • Flash Point: 346.0±17.2 °C

Geniposide

Geniposide is an iridoid glucoside extracted from Gardenia jasminoides Ellis fruits; exhibits a varity of biological activities such as anti-diabetic, antioxidative, antiproliferative and neuroprotective activities.

  • CAS Number: 24512-63-8
  • MF: C17H24O10
  • MW: 388.366
  • Catalog: Amyloid-β
  • Density: 1.5±0.1 g/cm3
  • Boiling Point: 641.4±55.0 °C at 760 mmHg
  • Melting Point: 161-162ºC
  • Flash Point: 231.5±25.0 °C

Atractylenolide II

Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity.IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1]Target: anticancer natural compoundin vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2].in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2].

  • CAS Number: 73069-14-4
  • MF: C15H20O2
  • MW: 232.318
  • Catalog: Cancer
  • Density: 1.1±0.1 g/cm3
  • Boiling Point: 378.0±41.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 158.7±25.0 °C

11-Oxo-mogroside V

11-oxo-mogroside V is a natural sweetener, isolated from the fruits of Momordica grosvenori, exhibits strong antioxidant activity. It exhibits significant inhibitory effects on reactive oxygen species (O2-, H2O2 and *OH) with EC50 of 4.79, 16.52, and 146.17 μg/mL, respectively.

  • CAS Number: 126105-11-1
  • MF: C60H100O29
  • MW: 1285.419
  • Catalog: Metabolic Disease
  • Density: 1.5±0.1 g/cm3
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Ginsenoside Rb2

Ginsenoside Rb2 is one of the main bioactive components of ginseng extracts. Rb2 can upregulate GPR120 gene expression.

  • CAS Number: 11021-13-9
  • MF: C53H90O22
  • MW: 1079.269
  • Catalog: GPR120
  • Density: 1.4±0.1 g/cm3
  • Boiling Point: 1117.1±65.0 °C at 760 mmHg
  • Melting Point: 197-199ºC
  • Flash Point: 629.4±34.3 °C

Panaxadiol

Panaxadiol is a novel antitumor agent extracted from the Chinese medical herb Panax ginseng.

  • CAS Number: 19666-76-3
  • MF: C30H52O3
  • MW: 460.732
  • Catalog: Cancer
  • Density: 1.0±0.1 g/cm3
  • Boiling Point: 531.3±45.0 °C at 760 mmHg
  • Melting Point: 247 °C
  • Flash Point: 275.1±28.7 °C

Ginsenoside Ro

Ginsenoside Ro exhibits a Ca2+-antagonistic antiplatelet effect with an IC50 of 155  μM. Ginsenoside Ro reduces the production of TXA2 more than it reduces the activities of COX-1 and TXAS.

  • CAS Number: 34367-04-9
  • MF: C48H76O19
  • MW: 957.106
  • Catalog: Prostaglandin Receptor
  • Density: 1.14
  • Boiling Point: 1018.6±65.0 °C at 760 mmHg
  • Melting Point: 241 °C
  • Flash Point: 289.2±27.8 °C